Place of Origin: | USA |
Brand Name: | Honeywell |
Model Number: | 51304156-100 |
Minimum Order Quantity: | 1 |
---|---|
Price: | negitiation |
Packaging Details: | in box |
Delivery Time: | 3-5days |
Payment Terms: | T/T, Western Union |
Supply Ability: | 100 |
Product Name: | Digital I O Module CC-GDIL21 51306319-175 | Product: | Digital I O Module |
---|---|---|---|
Model: | CC-GDIL21 51306319-175 | Brand: | Honeywell |
Net Weight (kg): | 0.25lbs | Packaging Quantity 1: | 1 |
Commodity Code: | 85371091 | Country Of Origin: | USA |
CC-GDIL21 51306319-175 Control Circuit Board HONEYWELL DIGITAL INPUT IOTA
Quick Details
Brand :Honwell
Model : CC-GDIL21 51306319-175
Place of Origin : USA
Contorl Circuit Board
PC Card
OTHER SUPERIOR PRODUCTS
Yasakawa Motor, Driver SG- | Mitsubishi Motor HC-,HA- |
Westinghouse Modules 1C-,5X- | Emerson VE-,KJ- |
Honeywell TC-,TK- | GE Modules IC - |
ABB Module | AB Module 1756-,1759- Tourch Screen 2711- |
Mitsubishi Drive MR- , Motor HA -,HC | Emerson MoudlesVE- ,KJ - |
Fanuc motor A0-, Drive | Yokogawa transmitter EJA- |
Rosemount Transmitter 3051- | Schneider Module 140- |
Panasonic Motor , Drive MH- | Siemens Module 6ES-, Touch Screen 6AV- |
TC-IOLI01 TC-IAH161 TC-OAH161 TC-IDD321,TC-PCIC01,TC-PCIC02 51204172-175
MC-TAOY22 MC-TDIY22 MC-TDOY22 80363969-150 MC-PA0Y22 MC-PAIH03 MC-PAOY22
80363972-150 MC-PDIY22 80363975-150 MC-PDOY22 TC-FXX172 TC-FPCXX2 TC-FXX132
MC-TD0Y22 MC-TDID12 MC-TAMT03 MC-TAIH02 MC-TDIY22 MC-TDOY22 MC-PDIY22
MC-TAMR03 MC-PLAM02 MC-PDIX02 MC-PAIH03 30732052-001 51196655-100 51401583-100
51403224-100 51304511-200 51402457-200 51192337-101 51404170-175 51404172-175
51401477-100 51402797-200 51304156-100 51304903-100 51401052-100
MC-PAIH03 MU-TAIH12 MC-PAOY22 MC-TAOY22 MU-KFTA05 MC-TAOY22
T-CONNECTOR MC-TAIH02 MC-TAIH12 MC-TAOY22 MP-HMRDLS-100 MP-DNCF02-100
MU-KFTA10 MC-TAIH02 MC-PLAM02 MC-TAMR04 51196653-100
80363975-150,51403519-160,51401583-100 51304485-150 MC-PDOY22
51201420-005 51401052-100 51402185-200 51309150-175 Grandly Automation Ltd
51204172-175 51204160-175 51304453-150 51309218-175 51304477-100 51304685-100
51304544-100 51309204-125 51401598-150 51402615-400 51304493-200 51304487-100
51304648-17551309152-175 51309223-125 51304419-100 51196654-10051109693-100B
51303932-426 51190516-332 51190465-10051304485-100 DIIOP 51304754-150 HLA12 IOP
51304481-100 51304516-200 STMIOP 51304672-150 AOIOP 51304542-100
51304511-100 51309276-150 51198947-100 51403698-100 51305348-100
51305907-175 51309204-175 51304540-200 80363975-150
51304362-150 51304487-150 51305907-175 51309204-175
80363972-150 80363969-150 51404172-175 51305072-300
51305072-200 51304453-150 51304754-150 51204162-175
51304362-150,51304337-150,51305907-175,51204172-175,51204160-175,
51204162-175,51304754-175,80363969-150,TC-PCIC02,51309550-275,
51403519-160,51309276-150,51402573-150,51403422-150,51304485-150
51304335-125 51309204-175 51195479-300 51309223-175 51305890-175
51402573-250,51309288-375,51404305-375 DCS,51403645-100 51198947-100
51303776-100 51201420-015 51304362-150 51201420-010 51403645-100
51305890-175 51304672-100 51198947-100 51403645-100 51308111-002
51404174-125 51404174-175 51305072-300 51403645-100 51192337-101
51303948-100 51305896-200 51196653-100 51403645-100 51309204-175
51196655-100 80366180-175 80363972-150 51403645-100 51304362-150
51403519-160 80363969-150 900E01-0102 51403645-100 51190523-225
51304441-175 51305907-175 51304754-150 51403645-100 51198947-100
51204172-175,51403519-160,51403698-100,51403519-160 51109456-200
TC-PRS021 TK-PPD011 TC-PRR021 TC-RPCXX1 TK-IOLI01 TC-CCR014 TK-PRR021
TC-ERSCA1 TC-FXX132 TC-FPCXX2 TC-CCR014 TK-FTEB01 TC-CCR013 TK-PRS021 TC-IXR061
TC- ODD321 TC-IDD321 TC-CCR013 TC-CCR014 MC-TAMR03 51309218-175 MC-TAMR04
51305907-175 MC-TAIH02 MC-TAIH03 MC-TLPA02 TC-PRS021
TK-FTEB01 TK-FTEB01 TK-FTEB01 TK-FTEB01 TK-FTEB01 TK-FTEB01 TK-FTEB01
TK-PRR021 TK-PRR021 TK-PRR021 TK-PRR021 TK-PRR021 TK-PRR021 TK-PRR021
TK-PRS021 TK-PRS021 TK-PRS021 TK-PRS021 TK-PRS021 TK-PRS021 TK-PRS021 TK-PRS021
TK-PRS022 TC-ODD321,TC-PCIC02,TC-CCR013,TC-FXX102,TC-IDJ161,TC-ODI161 TC-RPSCA2
TC-CCR014 TK-PRR021 TC-FPCXX2 TC-RPCXX1 TC-OAV081 TC-IAH161 TK-IOLI01 TC-IOLI01
TC-ODJ161 TC-ODJ161 TC-ODJ161 TC-ODJ161 TC-ODJ161 TC-ODJ161 TC-ODJ161
TC-ODD321 TC-IDD321 TK-PRS021 TK-PPD011 TC-IAH161 TC-OAV081 TC-IDD321
We define a (left) module M over an S-algebra R to be an S-module M with an action R ∧S M −→ M such that the standard diagrams commute. We obtain a category MR of (left) R-modules and a derived category DR. There is a smash product M ∧R N of a right R-module M and a left R-module N, which is an Smodule. For left R-modules M and N, there is a function S-module FR(M, N) that enjoys properties just like modules of homomorphisms in algebra. Each FR(M, M) is an S-algebra. If R is commutative, then M ∧R N and FR(M, N) are R-modules, and in this case MR and DR enjoy all of the properties of MS and DS. Thus each commutative S-algebra R determines a derived category of R-modules that has all of the structure that the stable homotopy category has. These new categories are of substantial intrinsic interest, and they give powerful new tools for the investigation of the classical stable homotopy category.
Upon restriction to Eilenberg-Mac Lane spectra, our topological theory subsumes a good deal of classical algebra. For a discrete ring R and R-modules M and N, we have TorR n (M, N) ∼= πn(HM ∧HR HN) and Extn R(M, N) ∼= π−nFHR(HM, HN). Here ∧R and FR must be interpreted in the derived category; that is, HM must be a CW HR-module. Moreover, the algebraic derived category DR is equivalent to the topological derived category DHR. In general, for an S-algebra R, approximation of R-modules M by weakly equivalent cell R-modules is roughly analogous to forming projective resolutions in algebra. There is a much more precise analogy that involves developing the derived INTRODUCTION 3 categories of modules over rings or, more generally, DGA’s in terms of cell modules. It is presented in [34], which gives an algebraic theory of A∞ and E∞ k-algebras that closely parallels the present topological theory. Upon restriction to the sphere spectrum S, the derived smash products M ∧S N and function spectra FS(M, N) have as their homotopy groups the homology and cohomology groups N∗(M) and N∗ (M). This suggests the alternative notations
Q1. What about the lead time?
A: 3-5 days for Sample preparing ,8-10 working days for mass production.
Q2. Do you have any MOQ limit of Industrial Servo Drives?
A: Low MOQ, 1pc is available.
Q3. How do you ship the goods and how long does it take to arrive?
A: Ship by DHL, UPS, FedEx or TNT. It takes 3-5 days to arrive. Airline and sea shipping also optional.
Secondly, during the guarantee period, we will send new lights with new order for small quantity. For defective batch products, we will repair them and resend them to you or we can discuss the solution including re-call according to real situation.
Contact Person: Harper
Tel: 86-13170829968
Fax: 86--25020661